Deadlock resolution in pipelined query graphs

نویسندگان

  • Vladislav Shkapenyuk
  • Ryan Williams
  • Stavros Harizopoulos
  • Anastassia Ailamaki
چکیده

Pipelining is a widely used technique that query execution engines employ to improve individual query execution times. In recently proposed settings, pipelining is used as an alternative to materialization to evaluate query plan graphs, where nodes in a query plan can have multiple parents. Such scenarios include shared table scans, runtime operator sharing, parallel sorting, and pipelined Multi-Query Optimization (MQO) plans. While pipelining in query graphs can increase performance, it can also lead to runtime deadlocks. The existing deadlock solutions focus on total deadlock prevention by statically deciding between pipelining and materialization, and apply only to MQO. The lack of runtime information leads to highly conservative decisions. Formally, this conservatism makes it NP-hard to find an optimal pipelining strategy that materializes a minimum cost set of nodes in a query graph. We propose a novel dynamic scheme for detecting and resolving deadlocks in pipelined query graphs. Instead of statically determining what nodes to materialize, we pipeline every pipelinable operator in the query plan, resolving deadlock when it arises by materialization. At runtime, more information about producerconsumer behavior is available and as a result, the problem of detecting and resolving deadlock becomes polynomial time solvable, where each particular deadlock resolution is of minimum cost. Our techniques are applicable to any system that uses pipelined query graphs. An evaluation on TPC-H and Wisconsin benchmarks demonstrates cases where our approach eliminates all unnecessary materializations, and minimizes the overall query execution cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)

Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...

متن کامل

Tree-Based Fault-Tolerant Multicast in Multicomputer Networks Using Pipelined Circuit Switching

A tree-based fault-tolerant multicast algorithm built on top of pipelined circuit switching is presented. For every multicast message, a multicast tree is constructed in a distributed and adaptive fashion. An underlying fault-tolerant routing algorithm is used to tolerate faulty nodes and links without requiring nodes to have global fault information. The multicast algorithm is provably deadloc...

متن کامل

Algebra of RDF Graphs for Querying Large-Scale Distributed Triple-Store

Large-scale RDF graph databases stored in shared-nothing clusters require query processing engine that can effectively exploit highly parallel computation environment. We propose algebra of RDF graphs and its physical counterpart, physical algebra of RDF graphs, designed to implement queries as distributed dataflow programs that run on cluster of servers. Operations of algebra reflect the chara...

متن کامل

Intra-query Concurrent Pipelined Processing for Distributed Full-Text Retrieval

Pipelined query processing over a term-wise distributed inverted index has superior throughput at high query multiprogramming levels. However, due to long query latencies this approach is inefficient at lower levels. In this paper we explore two types of intra-query parallelism within the pipelined approach, parallel execution of a query on different nodes and concurrent execution on the same n...

متن کامل

An Effective Path-aware Approach for Keyword Search over Data Graphs

Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005